

# GO EV!

#### **Build-Code-Test a Mini Electric Car**









## Overview

In this activity, you will use the **Engineering Design Process** to create a model Electric Vehicle, also known as an **EV**:

- 1. Build an EV Micro-Karts using provided materials and microcontrollers
- 2. Code an accelerometer to graph the EV Micro-Kart's movement











## **Building the EV Micro-Karts**

First, what material does it look like the original kart **chassis** (car body) is made of?

- Is this a good material for an engineer to use, why or why not?
- What other chassis materials would be better to use, why?









#### We used the Engineering Design Process to find the best design and material for the kart chassis!











2. Slide the **white battery** pack into the bottom opening and insert the **axles** 

1. Grab the **chassis** out of

your kit











#### 3. Place the **black battery pack** in the small rectangle cut-out



4. Place the **breadboard** in the large rectangle cut-out









Make sure your motor has a pulley attachment! Call one of us over if your motor has a gear!







5. Place the **motor** into the motor mount, gently slide it in from the side!









#### **Pulley Ratios: Speed vs Torque**

|                    | Pros                                                                                                                                                | Cons                                                                                                                                             |  |  |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Small Pulley Ratio | Small radius of driven pulley yields<br>higher RPM output, resulting in a<br>higher maximum speed<br>( <b>good</b> for <b>long-distance races</b> ) | Small radius of driven pulley yields<br>lower torque output, resulting in<br>lower acceleration<br>( <b>bad for short-distance races</b> )       |  |  |
| Large Pulley Ratio | Large radius of driven pulley yields<br>higher torque output, resulting in<br>higher acceleration<br>(good for short-distance races)                | Large radius of driven pulley yields<br>lower RPM output, resulting in a<br>lower maximum speed<br>( <b>bad</b> for <b>long-distance races</b> ) |  |  |









6. Put two **spacers** on the **front axle** 





7. Chose another pulley and a small rubber band.
Attach this pulley to the back axle of your kart











8. Attach the **wheels** to the axles

# 9. Put the **rubber band** on the **back axle pulley** and the **motor pulley**

Try to make sure the pulleys and rubberband are in line with each other!









#### Let's Test the Motor!

- 1. Connect the red wire of the motor to the red wire of the battery back
- 2. Connect the black wire of the motor to the black wire of the battery back
- 3. Turn on the battery pack, do the wheels spin? Do they spin forward or backward?

















#### **Motor Materials**

.... .... .... ..... ..... .....

Locate the following components in your kit:





- Breadboard
- Motor
- Micro:Bit breadboard adaptor
- Four M/M wires









#### **Breadboard Basics**









#### **Breadboard Basics**









#### **Attaching the Breadboard Adaptor**

\*The Micro:bit should sit above the black battery pack\*



- Slide the micro:bit into the micro:bit breadboard adapter
- Press the adapter gently but firmly into the top of the breadboard, into holes **E1** to **E11** and **F1** to **F11**







#### **IMPORTANT: Keep Circuits Safe!**

Whenever wiring or rewiring a circuit, make sure the **power source is DISCONNECTED!** 

Keeping the power connected when wiring circuits can damage components!









#### **Supplying Power to Your Breadboard**

- Place one end of an M/M wire into hole D1 (next to the G/ ground pin of the breadboard adapter)
- Place the other end into any hole on the negative rail









#### **Supplying Power to Your Breadboard**

- Place one end of an M/M wire into hole H1 (next to the 3V pin of the breadboard adapter)
- Place the other end into any hole on the positive rail









#### **Placing the Motor**

- Locate the wire leads from your motor. Plug the motor's red positive lead into the battery pack red positive port
- Plug the motor's black negative lead into the battery pack black negative port









#### **Test Your Wiring and Coding**

- Plug the white battery pack into the micro:bit and turn on the black battery pack
  - Slide the wire out of the battery pack to get the micro USB











#### **EV Micro-Kart Test Drive!**

- With a partner, test your the EV Micro-Kart to see how it moves.
- The EV Kart can't stop on its own so make sure you catch it!







Back





Accelerometer







#### What is an accelerometer?

An accelerometer is a sensor that measures the "acceleration" of an object. Acceleration is defined as how fast an object's speed changes over time! The micro:bit has a built in accelerometer!









#### **New Code Blocks!**

- Go to the **Extensions** tab and find the data logging extension
- Find the **Datalogger** extension and click on it to add it to your block library





datalogger Data logging to flash memory. micro:bit (V2) only.

#### Learn More







- Go to the Variables menu and make a variable called "logging"; set logging to "false" (find "false" under Logic)
- Grab the "set columns" block from the new data logger menu and click the plus '+' twice to add two more rows
- Type **x**, **y**, and **z** in each of the boxes









- In the Loops menu grab the "every 500 ms" block and change it to 100 ms
- Grab an "if <u>then</u>" statement from the Logic menu, and put "logging" after "if"
- From the Data Logger menu grab the "log data" block and click the "+" twice. Type x, y, and z in the value spaces
- From the Input menu grab three "acceleration (mg) \_\_" blocks and change two to y and z and put them in the last space next to value









- Navigate to the Inputs menu, and select "on button B pressed"
- If this button is clicked and we are logging, we want to stop logging; on the flip side if we are not logging and the button is clicked we want to start logging
- The "not \_\_\_" button can be found in the inputs menu
- If we are logging we want the screen to display a **checkmark**









- Navigate to the Data Logger menu, and select "on log full"
- If there is no more storage we need to get rid of it
- grab a "set logging to \_\_" from the Variables menu and a "false" block from the Logic menu to turn logging off
- We want a visual cue for why we aren't collecting data so grab the **"show icon"** block from the **Basic** menu and select the skull









#### We now need a way to clear data:

- Grab a "on button A pressed" block from the Inputs menu and change it to "A + B"
- Grab a **"show icon"** block from the **Basic** menu and change the icon to an **"X"**
- Grab the "delete log" block from the Data
   Logger menu
- Grab a "set logging to \_\_\_" from the Variables menu and a "false" from the Logic menu
- Grab a "set columns" block from the Data
   Logger menu and type in x, y and z in the spaces
- Grab a "clear screen" block from the Basics menu to clear the micro:bit to show its finished erasing data









#### **How to Find Your Accelerometer Data**

- Plug in your micro:bit and open files (if it doesn't pop up automatically) and select the **MICROBIT** option on the side
- Click on "**MY\_DATA**"

| ■   🖸 📙 🚽  <br>File Home                                                                               | Share | View                               | Manage<br>Drive Tools | MICROBIT (D:) |                                                                              |                                                           |                                |     | -                    |   |
|--------------------------------------------------------------------------------------------------------|-------|------------------------------------|-----------------------|---------------|------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------|-----|----------------------|---|
| ← → ~ ↑ 🗖                                                                                              | > MIC | ROBIT (D:)                         |                       |               |                                                                              |                                                           |                                | ٽ ~ | Search MICROBIT (D:) | م |
| Quick access Desktop Downloads Documents Pictures Music Nideos OneDrive Inis PC MICROBIT (D:) Yvetwork | *     | Name<br>Detrail<br>Minense<br>My_D | LS                    | ▼             | Date modified<br>3/22/2016 4:30 PM<br>3/22/2016 4:30 PM<br>3/22/2016 4:30 PM | Type<br>Text Document<br>Chrome HTML Do<br>Chrome HTML Do | Size<br>1 KB<br>1 KB<br>124 KB |     |                      |   |
| 3 items                                                                                                |       |                                    |                       |               |                                                                              |                                                           |                                |     |                      |   |







#### **How to Find Your Accelerometer Data**

- On this screen you can view the data table!
- Click on **Visual Preview** to view data in a graph!









#### Finished EV Micro-Kart!

**Congratulations,** you have created an EV Micro-Kart with a variable speed motor, headlights & taillights, and an accelerometer!

- What have you learned about EVs?
- What questions do you have about EVs?
- Has your opinion changed about EVs?













