ELECTRIC ROAD SYSTEMS IN FRANCE

&

CHARGE AS YOU DRIVE PROJECT

Pierre Delaigue – Director of Connected, Autonomous & Electric Mobility – VINCI

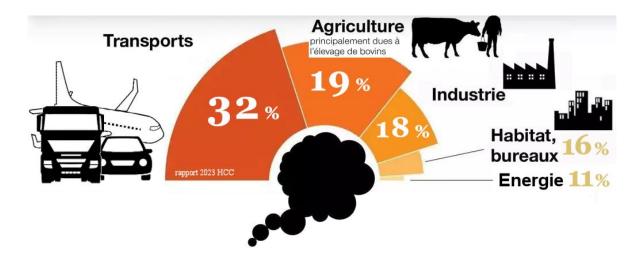
ASPIRE Industry & Innovation Day - Industry Panel, Sept 2024

VINCI, GLOBAL PLAYER IN CONCESSIONS, ENERGY & CONSTRUCTION

VINCI IN THE UNITED STATES

HIGHWAY OPERATOR IN FRANCE

HEAVY ROAD TRANSPORT - A MAJOR ENVIRONMENTAL CHALLENGE



- **-55% overall target by 2030** (vs. 1990)
- -45% for new trucks by 2030 (vs. 2019)

Transport is most emitting sector

Heavy road transport: 7,5% of national emissions

FRANCE MINISTRY OF TRANSPORT - 2021 STUDY ON TRUCK DECARBONISATION

Liquid biofuels & biogas

Big electric batteries

Hydrogen

BEST ALTERNATIVE: ELECTRIC ROAD SYSTEMS

Environmental benefits

Reduced raw materials needs

Reduced carbon emissions

Economic benefits

Reduced total costs vs static charger scenario

Operational benefits

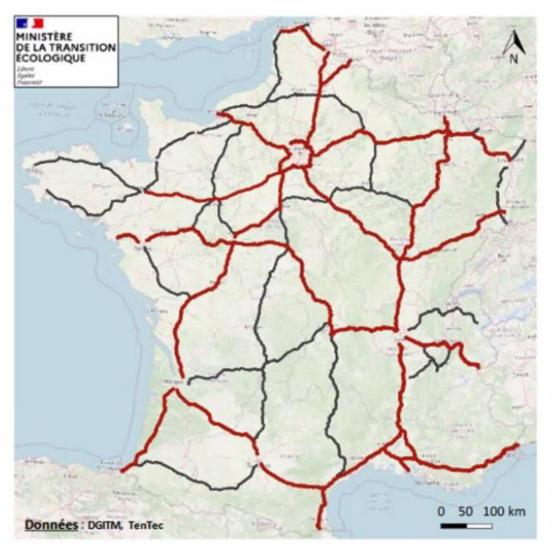
More range

More payload

Less downtime

FRANCE MINISTRY OF TRANSPORT - AMBITIOUS ERS ROADMAP

8950 kms of ERS to deploy on highways by 2035


36 B€ investment

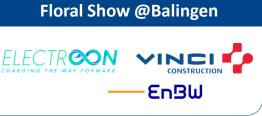
Major socio-economic impacts

Next steps

- compare ERS technologies through projects
- decide on one solution to deploy at scale

Red network by 2030 + black network by 2035

VINCI PROJECTS ON ERS



ERS EXPERIMENT ON A10 HIGHWAY IN FRANCE

Induction by electreon

Conduction by Elonroad

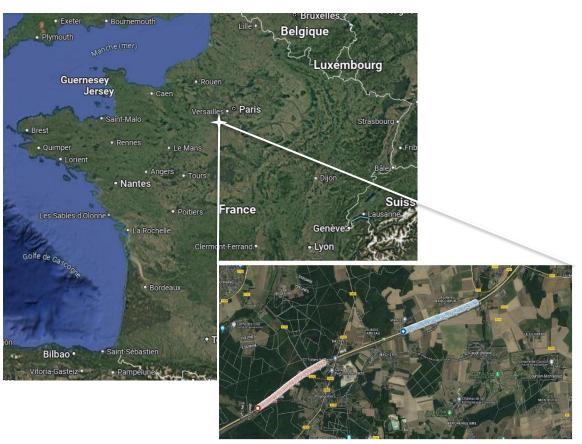
2 technologies compared in the same highway conditions

VS

Partners

4 categories of vehicles to test interoperability

ERS EXPERIMENT ON A10 HIGHWAY IN FRANCE


CLOSED TEST SITE IN NANTES

FABAC traffic simulator

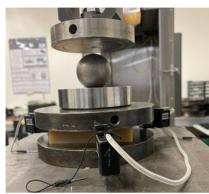
Need to sustain heavy highway traffic (5800 trucks/day on A10)

A10 HIGHWAY NEAR PARIS

2 experimental sites

ROAD INTEGRATION CHALLENGES

During design phase


Materials

EPDM material (reference = NA) PU "Electreon" (reference = NA) PU "Hutchinson" (reference = PU-3 140 PTS)

Elastomeric & Polyurethane coil materials

Mechanical properties

Young's modulus measurements

Friction measurements

During installation

Trench strategy & fillers

Gluing products

Installation pace / road closures

Heat resistance & compaction

During operation

Water management

Mechanical Durability

Maintenance

Friction

