University of Colorado Colorado Springs

The Role of Battery Management
in Electric Vehicles

M. Scott Trimboli & Gregory L. Plett

Department of Electrical and Computer Engineering
University of Colorado Colorado Springs

ASPIRE Course in Electrified Transportation Systems
Spring 2024

m University of Colorado
Colorado Springs



University of Colorado Colorado Springs

Topics for today’s lecture

= Part 1: Lithium-ion battery cell models

+ Topic 1.1: Equivalent-circuit cell
models

+ Topic 1.2: Parameter identification for
equivalent-circuit models

+ Topic 1.3: Physics-based cell models

+ Topic 1.4: Parameter identification for
physics-based models

m Part 2: Algorithms for battery management
systems

+ Topic 2.1: Estimating state-of-charge
o Topic 2.2: Estimating state-of-power
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Role of Battery Management in Electric Vehicles

= Primary purposes of battery management are:
= Ensure safe vehicle operation — detect unsafe
operating conditions and take action

= Protect individual cells from damage (abuse/
failure cases), and prolong the life of the battery
(normal operating cases)

= Maintain the battery pack in a state where it can
fulfill its functional design requirements

= Prolong the life of the battery under normal operating conditions
= Inform vehicle controller on how to make best use of the battery pack (e.g., power limits, charge
control, etc.)
= Battery management is accomplished by a battery management system (BMS) —
an embedded device installed on-board the vehicle
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Battery Management Functions

= A BMS continually makes =1 = ==
physical measurements of _I-E Ai/\;— = L|I[E

1] ===

1 B 7_ E =Y . E—U—_ | ‘

voltage, current, & temperature, =
= == —_—-
and runs algorithms to: . .
meas. voltage estimate estimate balance compute
current state of state of power
temperature gfcharge (SOC) # health (SOH) cells limits
—
loop once each measurement interval while pack is active

= Determine battery pack:
= State-of-Charge (SOC)
» State-of-Health (SOH)
= Determine which cells must be balanced
= Compute available energy and State-of-Power (SOP) of the pack

» The most accurate and robust algorithms rely heavily on mathematical equations,
or models, that describe battery cell operation

azijeniul :uo Aay
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Battery Cell Models

m Equivalent circuit models (ECM) —built from

common circuit elements _¢\§\y_ =
o OCYV a function of cell state-of-charge oovem 1 | A
¢ Ohmic series resistance R, I
 Polarization time constants caused by C Q)
diffusion - similar to parallel .
resistor-capacitor circuit R, ||C; -

)

m Physics-based models (PBM) — built from first-
principles electrochemical equations

+ Enforce conservation of mass & charge
+ Capture reaction kinetics

+ Convey underlying processes involved in ﬁa}?:é(;mf
dynamic behavior %) _ g (D, V) + ol - 2]

2

RT
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Equivalent-circuit Models; Open-circuit Voltage

s Models are sets of equations that describe something

= We may develop simple battery models by building up behavioral/
phenomenological analogs using common circuit elements

= Resulting “equivalent circuit” models (ECMs):

+ Help give feeling for how cells respond to different usage scenarios Bt -
¥ (egat)-0

+ Are the basis for most BMS algorithms currently employed in industry
m We start with the simplest possible model: ideal voltage source
= In this model, v(t) = OCV (open-circuit voltage)

+ Voltage is constant: not a function of past cell usage or electrical current (1) — +
= This model is over-simplified, but provides a good starting point
¢ Fundamentally, batteries do supply a voltage to a load OCV, 'D V(1)
= And, when the cell is unloaded and in complete equilibrium
(i.e., “open-circuit’), the voltage is fairly predictable - 9

= An ideal voltage source will be part of our ECM
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State of Charge and Total Capacity

s When a cell is fully charged, its open-circuit voltage is higher than when it is discharged
= S0, we can improve our model by including dependence on a cell's charge status
s We define unitless state of charge (SOC) z(t) of a cell to be:

¢ z(t) = 100% when the cell is fully charged

¢ z(t) = 0% when the cell is fully discharged

» Also define total capacity Q (thermodynamic reversible capacity, measured in Ah or mAh) to
be total amount of charge removed when discharging from z(t) = 100% to z(t) = 0%

s Can model SOC as: a In discrete time, if we assume ,
z(t) = —i(t)/Q that i(t) is constant over the OCV(z(1) U —» &
v(t) = 0CV(z(t), sampling interval At:
where z = dz/dt and sign of z[k +1] = z[k] — Ei[k] ()
i(t) is positive on discharge Q

v[k] = OCV(z[k]) .
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Coulombic Efficiency; Open-circuit Voltage
m Cells are not perfectly efficient: we can model this by writing z(t) = —i(t)n(t)/Q
or in discrete-time, z[k + 1] = z[k] — nlkli[k]At/Q
+ “Coulombic efficiency” n[k] < 1 on charge, as some
charge is typically lost due to unwanted side reactions
+ We usually model n[k] = 1 on discharge

CV versus SOC for six cells at 25°C

4.0
= Coulombic (or charge) efficiency # energy efficiency

+ Coulombic efficiency = (charge out)/(charge in),
often around 99% in Li-ion

+ Energy efficiency = (energy out)/(energy in),
is often closer to 95% due to resistive heat loss

W
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Open-circuit voltage (V)
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State of charge (%)

e}

m OCV plotted vs. SOC for six lithium-ion chemistries

= Note: OCV is also a function of temperature — we
can include that in the model as OCV(z(t), T (t)).
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Polarization: Ohmic and Diffusion Voltages

Polarization is a difference between terminal voltage and OCV due to passage of current
For example, a cell's voltage drops when the cell is under load Ro +
This can be modeled, in part, as a resistance in series with the OCV(z(1))
ideal voltage source: v(t) = 0CV(z(t)) — i(t)R, oD
¢ v(t) > 0CV(z(t)) on charge,
¢ v(t) < OCV(z(t)) on discharge o
Power dissipated by R, as heat: energy efficiency imperfect e SESPORSE fO dls

R, models instant voltage change due to a current step ~ 410}
In practice, we also observe a dynamic response: a
response that evolves over time due to a current step S 400
Caused by slow diffusion processes in the cell; we refer 5 g5l
to this slowly-changing voltage as a diffusion voltage
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Thévenin Model

Diffusion voltages can be closely approximated in a circuit R,

using one or more parallel resistor-capacitor sub-circuits —W'— R, +
Cell voltage in “Thévenin model” is now: ocveml | |

v(t) = 0CV(z(t)) — v¢, (t) — Roi(t) " o0

Process to identify parameter values from test data is simpler
if we write voltage in terms of element currents instead: o

v(t) = 0CV(z(t)) — Rqig, (t) — Ryi(t)

Standard circuit rules can be used to find differential equations for capacitor voltage or

diffusion-resistor current R, R,
hysteresis

Additional R-C pairs can be added to the model
to improve modeling fidelity (in theory, an infinite
number are needed, but we can do quite well
with only a few)

OCV(z(®)
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Experimental Evidence of Hysteresis

= [f a cell is allowed to rest long enough, diffusion voltages
decay to zero, so model voltage decays to the OCV

= In areal cell, this doesn't happen; i.e., for every SOC, we find
a range of possible stable “OCV” values - hysteresis

» Ignoring hysteresis causes large prediction errors

= Note distinction between hysteresis and diffusion voltages: | | | |

+ Diffusion voltages change directly with time but hysteresis SOC (%)
voltages change when SOC changes

Evidence of hysteresis
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Hysteresis model: v = 50
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= Can visualize hysteresis more clearly when we subtract OCV M(z. £) — 0.065gn()

m Appears there is a maximum plus/minus hysteresis, may be -
SOC dependent; limit is positive if cell presently charging;
otherwise, negative: M(z, z)

m Hysteresis “decays” toward M(z, z) at a rate that depends on
closeness to that amount: indicates a differential equation in z
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Enhanced self-correcting model

Hysteresis can be modeled as first-order ODE

hysteresis —/VV\— Ro N
R-C and hysteresis equations can be converted 1 ' o s Ao
to discrete time for computer implementation | |

Note that multiple R-C pairs can be included i

in the model OCV(z(1)) )

Final form of ECM is a time-varying nonlinear discrete-time state-space structure (with
appropriate substitutions of elements in matrices):

z|lk + 1] 1 0 0 z|k] —n[k]At/Q 0 ] [ ifk] ]
irlk+1]|=1]0 A 0 irlk]|+ B 0 ..
II:[k + 1] 0 SC Aylk] }I;[k] SC Aylk] -1 Slgn(vl[k])
" Y — " ulk]
x[k+1] Alk] x[k] B[k]

v|k] = OCV(z[k],T[k]) + Mh[k] — ZR]. Rjig, k] — Ryi[k]
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Characterizing Cell OCV

= System ID involves characterizing OCV and the dynamic Measured voltage for test seript 1
aspects of the model separately

m Laboratory test steps to collect data for the OCV relationship: =

Script 1: Soak cell at test temperature;
discharge from 100% SOC to vy,
(note: this is not the same thing as 0% SOC)

Script 2: Soak cell at 25 °C; dis/charge cell to 0% SOC 0o s 0 15 (ﬁ? 2 a0 e
(OCV is now vyin) |
Script 3: Soak cell at test temperature; ot Measured voltage for test script 3

charge from 0% SOC to vy,x (not 100% SOC)

Script 4: Soak cell at 25°C; dis/charge cell to 100% SOC
(OCV is noW vy, 4% )

» Carefully considering the meaning of each of these steps,
we can also compute coulombic efficiency and total capacity

0 5 10 15 20 25 30 35
Time (h)
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Processing OCV-test Data

Voltages versus SOC

m Data processing recognizes that SOC at the beginning and end  «=f
of the set of four scripts is 100%; using the SOC equation, 4.0}

we can determine coulombic efficiency and total capacity g 88
= We can then determine SOC for every test point : N |
» We need to create a way to solve the “missing data problem”to ,, — O vlage |
. . == Charge voltage
interpolate approximate OCV vs. SOC for every temperature 50 | | — - Approximate OCV
0 20 40 60 80 100
State of charge (%)
= OCVyvs. Socat individual OCV versus SOC for six cells at 0°C Per-degree OCV temperature variation
temperatures is regressed to ' ' | | ool | | | |
. . 4} o
a simple linear model to find s 2 o4
the final relationship: 35 € o2
— = S o
OCV(z(t), T(t)) = 0CVO(z(t)) .
+T(t)xOCVrel(z(t)) 5 3-04)
O25 _06
0 20 40 60 80 100 0 20 40 60 80 100
State of charge (%) State of charge (%)
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Characterizing model dynamic parameter values

m Test steps for dynamic testing: sal

Script 1: Soak cell at test temperature; 40

discharge a small amount to avoid overvoltage later in test; = °°
execute dynamic profiles over SOC range of interest ol

Output from test script 1

Voltage (

3.4¢

Script 2: Soak cell at 25 °C; dis/charge cell to 0% SOC s2f
(OCV equal to vyiy) 30f——
Script 3: Soak cell at 25 °C; charge cell to 100% SOC T Sren T
(OCV equal tO vmax ) Normalized current for UDDS profile

m Dynamic test script should resemble final usage scenario ' T

as much as possible since we are regressing the model 08}
parameters to fit measured data (and the model has error)

m We often use standard “urban dynamometer driving
schedule” tests when fitting models for automotive purposes

0 4 8 12 16 20 24
Time (min)

March 2024 ASPIRE Electrified Transportation Systems Course



University of Colorado Colorado Springs

Processing model dynamic parameter values

= The dynamic data {i[k], v[k]} are used to identify all ESC Wl voltage precietion using EST model
model parameter values (except OCV vs. SOC relationship)
1. Compute n and Q directly from data
2. Compute z[k], OCV(z|k]) for every data sample;

subtract OCV from v|k] | [

3. Use subspace system ID to find RC time constants e

4. Compute iy[k] for every data sample Time (min)

5. Guess value for y; using y, compute h[k] for every sample Voltage prediction using ESC model

6. “Unexplained” part of voltage is now linear in parameters— =z} " Modeivatage
solve for these parameter values using least squares S sel

7. Compute rms voltage-prediction error of present model §’3,4_

8. Adapt y to minimize error, iterating 5-8 until convergence ~ |

m Good models often have less than SmV rms error, although . LU
models are often usable even up to 25mV or so R
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Physics-based models (PBMs)

s ECMSs can predict input-output well,
but PBMs are needed to understand
(and ultimately control) cell aging

=
I

—
:]
I il ]
[ | i
— 1§
— 1|4

DT
|

% _Al"_ _slﬁ_“ =
m Following variables are of interest: L
P : icro— : _ hysics—
¢ Potential in solid x. t molecular e continuum cell scale P
, ¢S( ’ ) scale PDEs s%);glggE)s scale PDEs ODEs prgcz?iiggns

+ Potential in electrolyte, ¢.(x,t)
+ Concentration of Li in solid, cs(x, 7, t), particularly at surface of solid, ¢ (x, t)
+ Concentration of Li in electrolyte, c.(x, t)
+ Rate of lithium movement between phases, j(x, t)
m Models can be developed at different length scales, varying from molecular to continuum

» Smaller length scales allow understanding the effects of localized flaws and fine details;
larger length scales homogenize to enable faster computation

+ Presently, continuum-scale models can (often) run in real time on desktop PCs;
smaller length scales need more time or supercomputers
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Continuum-scale P2D model
s Continuum “porous electrode” “pseudo-2d”

Positive electrode

Negative electrode

: : - - 5
models use physics to derive equations for all 3 3
internal cell processes using coupled PDEs £ S

= Solving the PDEs (and associated boundary 5 E
conditions) determines all internal and | o
external variables of interest 00000000000000000 Sl

Ocs D 5 . ) o . . .
T ?V - (r’Ve) [diffusion of lithium in solid electrode particles]
asFj, =V - (0*V ) [charge balance in particles; electron current]
a ev-e . - - - - -
(gatc ) _ V- (D) + as(1 — t2)), [diffusion of lithium in electrolyte]
_ . 2RT dinf
asFj,= -V (s (Voo — — (1 — th) 1+ £)Vin Ce [ion current]
F dlInc.
. Qe Qg Qg OfaF aaF .
Jn = ko (Cse) “(Csmax — Cse) ° (Ce) (exp ( =T 77) exp ( R 17>> [reaction rate]

n = ¢s - Qbe - Uocp(cs,e) _jnFRfiIm
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1-d diffusion example

Diffusion example

Most model equations are principally diffusion equations:

dc(x,t)
6tt =V- (DVc(x, t)) + f(x,t)

where c is a quantity that diffuses, f is a forcing function

To help visualize diffusion, let's consider the special case

of 1-d diffusion: in 1-d, divergence is a first derivative so
dc(x,t) _p 0%c(x,t) FFOuD)

at dx?2 ’

We can approximate the time derivative using Euler's forward
rule and the spatial second derivative using central difference

Put together, we get

O OO OO0 O0OO0oOOoOo oo

1 | | | | | Y | O | N | e

I~ ~ ~ ~ ~ o~ o~ o~ o~
O ©W O NGO A WN =

~
—_

X location

c(x+Ax,t) — 2c(x,t) + c(x — Ax, t)
(Ax)?

Simulating this, starting with an initial concentration gradient,

final result is uniform concentration (f (x, t) = 0)

c(x,t +At) = c(x,t) + DAt
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Open-circuit voltage
»  While using PDEs directly in a BMS is (presently)

Open-circuit potential of common
positive-electrode materials

unreasonable, some cell-level variables can be understood *
quite easily from them: OCP, capacity, SOC s
= OCV is steady-state terminal voltage when cell in equilibrium 5
m Steady-state condition means both ¢, and c, are uniform % | [—TMO—NcA|
) —LCO —LFP
m  OCV can be related to the open-circuit potentials of both — NMC
electrodes USEL (2) = Uy, (67) — Uge, (6™) IR AL
= High cell voltages (for high energy density), require high 2 O oatvoolootrodo matarae.
positive-electrode potential and low negative-electrode k | | '
potential (vs. Li/Li*) S 1 e
= Positive and negative plotted versus 87 = c?/cP, .. and EN =
O™ = cl/clmax Where c .« is amount of Li stored when g —GCde_ i
electrode crystal lattice structure completely full © o

0 0.2 0.4 0.6 0.8 1
Stoichiometry (unitless)
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Cell total capacity and SOC

In “ideal” case, we might think that cell uses capacity from ¢ = 0 to ¢; = ¢ max

Practical cells don't use entire range (to avoid rapid cell degradation or power depletion)
¢ Use only from xo, t0 x99, in Negative and y,o, t0 y,09, iN positive electrode
¢ Interms of physical cell-model parameter values,
Q" = AFL”S?Cgmaxlxloo% - x0%|/3600 Ah
QP = AFLP&]cg max|Y100% — Yoss /3600 Ah
¢ These capacities are matched, by definition of compatible x40, X100%, Y0%, Y100%

Notice that cell total capacity is not a function of temperature, rate, and so forth

Cell SOC varies linearly as electrode stoichiometry varies
Therefore, we can compute cell-level state of charge z as either

n n p p _
7 = Cs,avg/cs,max — X0% _ Cs,avg/cs,max Yo%

X100% — X0% Y100% — Yo%
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Parameter identification for PBMs

s We now consider parameter identification for PBMs Negative | Separator | Positive
« For ECM, fit values of Ry, Ry, Cq (etc.) so model predictions ele;iﬁ‘gde ele;fﬂide
match measured current—voltage data as well as possible agfefg a?;fés
+ A simple optimization since there are few values to find L8 L5eP TP
= For PBM, at least 35 unique values must be measured, plus s Hf{%fp P
two OCP relationships DA DPos
+ Not all are observable from current-voltage data ffgg - f}fo
+ Traditionally, the process is done via cell teardown and D[ Do Dg;;;
costly electrochemical experiments 10
+ Dimensional parameters are relatively easy to measure Cfféfg Cljop S
via teardown; others are difficult to impossible to measure amgx O;”‘
= Our procedure: (1) reformulate model, (2) conduct lab tests Ron R
designed to isolate specific parameters, (3) process test data e Ce,0 s
0100 0700

March 2024 ASPIRE Electrified Transportation Systems Course



University of Colorado Colorado Springs

Model reformulation and OCP determination

m  We have previously reported a method to identify parameter values of a Doyle—Fuller—
Newman (DFN) cell model, and have presented System ID results [1,2]

s Method first notices that some parameters always occur in Negative | Separator | Positive
groups, so only the group (not the individual parameter values) [Sectrode clectrode
. . . re re Otot Otot
can be identified by input—output data: e.g, “totg = GEfng /LT€8 o oy Klor
H D;leo DS Of)
o This reduced parameter count from 35 to 24 e Z T — e Z
= Then, we find the OCP operational windows of each electrode || Din.i | Dimed | Dromed
by correlating electrode OCP and cell OCV relationships ty o
Negative-electrode coin-cell OCP Full-cell OCV relationship Positive-electrode coin-cell OCP kstep kstep
x T 4 : | N | | - oo |4 nger%ax ng?rrslax
?-5 £ Z%f af T Rgleri,tot Rglol’il,tot
i s i
: A E‘ﬁ'ﬁ"; ................................................................................................... , 0100 0100
=] 7]

Degree of lithiation fip /Qhet, gtate of charge ficen /Qcen Degree of lithiation @b, /Q%e
[1] Jobman, R., Trimboli, M.S., Plett, G.L., “Identification of lithium-ion physics-based model parameter values,” J. Energy Challenges & Mechanics, 2(2), 45-55, 2015
[2] Jobman, R. Identification of Lithium-lon Cell Physics-Model Parameter Values, PhD dissertation, UCCS, 2015, http://hdl.handle.net/10976/166641
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Finding parameters of dynamic portion of model
m Process of system identification for dynamic portion of PBM is similar to that for ECM

Model Measure r Model Measure
a . > —
F= a Fie= Rn =fn() | rj Vv
- —0
10)
13!
=
2 (Xmea " xest)2 s 7" n 2 (Rmea- Rest)2
Optimization PPt & Optimization
B” J m D ® 20% SOC
e (@) ® 40% SOC
60% SOC
e 80% SOC

a C-rate

= However, the problem now is that we have many, many more parameter values to find
m Cleverly designed lab tests help by isolating responses from certain groups of parameters

+ Variety of input (e.g., different frequencies, magnitudes; SOC setpoints)
+ Necessary to be able to to formulate submodels for each test to aid optimizations

ASPIRE Electrified Transportation Systems Course

March 2024



University of Colorado Colorado Springs

Pulse and EIS testing

m Pulse tests measure instantaneous resistance as a Current-Voltage Pulse Resp., 25Ah cell, -15°C
function of SOC, rate, and temperature 0F R * 20%SOC ]

® 40% SOC
+ Removes diffusion parameters from consideration o " 000300,
since concentrations do not change instantly
¢ Optimizes model parameter values to match model
resistance to measured resistance as well as possible N

+ Resolves values for 15 parameters! Only 9 remain YRy : v >
Change in voltage (V)

—_
o
T

Pulse current (A)
S o

_20 E

= Finally, EIS tests conducted over wide frequency range
collect data to determine remaining parameter values Input x(1) = X sin ot

s Optimize model parameter values to match
model frequency response to measured IX iY
frequency response as well as possible \/ W W
AN

Output y(¢) = Y sin (wt + ¢)

~Y

March 2024 ASPIRE Electrified Transportation Systems Course



University of Colorado Colorado Springs

March 2024 ASPIRE Electrified Transportation Systems Course



BMS Tasks

= A battery-management system (BMS) is required to monitor and control battery operation
= A BMS has the following priorities:

+ Protects safety of the operator of the host application; detects
unsafe operating conditions and responds

+ Protects cells of battery from damage in abuse/failure cases
+ Prolongs service lifetime of battery (normal operating cases)

+ Maintains battery in a state in which it can fulfill its functional design
requirements
+ Informs the host-application control computer how to make the best
use of the pack right now (e.g., power limits), control charger, etc.
= There are both hardware and software elements in a BMS design

+ This lecture will focus on the software/algorithm requirements
related to careful battery management, as well as hardware
sensing requirements to enable these algorithms
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BMS algorithm outputs

m Battery applications need to know two battery quantities: 1//
+ How much energy is presently stored in the battery pack
+ How much power is available in the immediate future
Knowing energy is most important for applications such as EV:
¢ Tells me how far | can drive (or, how much runtime remains)
= Knowing power is most important for applications such as HEV:
+ Tells me whether | can accelerate or accept braking charge

» Neither can be measured directly
+ Energy can be calculated if all cell total capacities Q

and states of charge are known L,; gl \_, Energy
+ Power limits can be estimated if all cell resistances R [goclkh—|  Pack
and states of charge are known — Calculations o[ Power
m Neither SOC, Q, nor R can be measured directly: these L ™ )

must be estimated using more primitive measurements
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SOC estimation in the BMS algorithm control Ioop

= Battery-cell SOC quantifies how
much charge is stored that might
be released to a load circuit to
accomplish some task

m There is no practical sensor that
can measure SOC; instead, its
value must be estimated using
more basic measurements of cell voltage, current, and temperature (for example)

s Knowledge of SOC is needed to calibrate many SOH estimates, and in the calculation of
SOE and SOP themselves

= Knowing SOC is important to avoid overcharge and undercharge conditions, for charge
control in general, and for balancing

m Accurate SOC estimates enhance: longevity, performance, reliability, density, economy

)

0
[
0
[
I
[
l

A—J

meas. voltage estimate estimate balance compute
current state of state of power
temperature gfcharge (SOC) # health (SOH) cells limits

loop once each measurement mterval while pack is active

azijeniul :uo Aay
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Physical significance of SOC

s SOC is a physical quantity that (in principle) electrons aree —
could be measured directly, although no practical Discharge
sensor eXiStS that can dO SO Negative elecode (anode) Positive electrode (cathode)
» |n negative- and positive-electrode particles, there o LN 1
are a discrete number of sites that can hold lithium L
- - : =8 58
= For longevity, we never fill all vacancies nordowe £& £
ites: ' ©8 ©'g
empty all sites; we use a predet_ermlned range Posiive. M2 Negative ons (f presen
= At one end of the range, we define cell SOC to be TTT 17 Discharge 20 OPPOsite direction

0%; at the other end, we define cell SOC to be 100% e/
] . / Lithium fills vacancies inside of particles:
s SOC varies linearly between these extremes

"stoichiometry" of negative electrode varies
oy . . [o] lele ith cell SOC; "stoichi try" of iti
= Note that it is physically possible to overcharge and | clectrode varies negatively with eell SOC
undercharge: the definition of “0%” and “100%” are
operational design limits, not physical limits

a0

March 2024 ASPIRE Electrified Transportation Systems Course



University of Colorado Colorado Springs

Definitions

m Acellis fully charged when its OCV is equal to v,,,,(T) TR G folo

= Acell is fully discharged when its OCV is equal to v,,;,,(T) charged Y ;% £

= Total capacity Q is quantity of charge removed bringing cell from = zﬁé K
fully charged to fully discharged state: not a fn of rate or temperature 8 §§- - }3

m Discharge capacity Qp,q¢¢) is quantity of charge removed bringing § @g };;
cell at a constant rate from fully charged state until its loaded b I N

terminal voltage reaches v,,;, (T): fn of both rate and temperature -

m Nominal capacity Q,,, is cell rating representing Q. but Q,,o;m # Q1c and Q,om # Q

m Residual capacity is quantity of charge that would be removed if the cell were brought
from its present state to a fully discharged state

m Residual discharge capacity is quantity of charge that would be removed if cell were
brought from present state to point where loaded terminal voltage reaches v,,;, (T)

m (Physical) cell state-of-charge is the ratio of its residual capacity to its total capacity
m (There exist “engineering SOC” definitions that are difficult to calibrate, less useful overall)
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Taxonomy of SOC-estimation methods

(SOC-<stimation methods ) = SOC estimation is a very mature field; many approaches
— s BMS-algorithm engineers naturally tend to implement methods
| oC “ ” .
that “make sense” to them, regardless of accuracy/complexity/
|—[0Cv CC,EIS, ... ) robustness...
B » Note: there is a difference between conceptual complexity and
|_( computational complexity — in a product, the latter matters more
SVM, NN\, ... . .
) = My opinion is that model-based methods are best approach
— Observers ¢ “Don’t estimate what Actual battery Physical Measured
|_[ yOU alrea dy knOW” cell current - battery cell cell voltage -
Luenberger, PI, sliding mode, . . . ) LSe your mode” Actual cell siate
— Adaptive filter + Based on tried-and-true At
. . metho _
|_[X1<F, PR ) control-systems principles
+ “Observers” and “adaptive Mathematical model
. ” . . »| of physical cell :
filters” fall into this Measured - . Predicted
ca tegory cell current tate estimate cell voltage
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Kalman-filter approach to SOC estimation

With some assumptions, KF is optimal: often work well even when assumptions violated

Standard KF uses linear models; lithium-ion cells are nonlinear so must use nonlinear
variant; e.g., extended KF, sigma-point KF (incl. UKF, CKF)

(Initialize state estimate, estimation-error covariance )

Filter predicts state and voltage; then updates prediction
based on measured voltage and time-varying gain matrix ¢ v
. ; 1a) Predict model state vector
Important feature of xKF: confidence bounds on estimate! )
Example USing EKF below: (lb) Compute prediction-error covariance)
SOC estimation using EKF . SOC estimation errors using EKF U
:gﬁate i \ :Egg;ds (lc) Predict cell voltage

—— Bounds \\ ] +
2r 1 : :
[Za) Compute filter gain matrix ]

e ar

O v
5) ///—/ y [Zb) Estimate model state vector ]
-4 ] +

SOC error (%)
[«

[ZC) Compute estimation-error covariance]

100 200 300 400 500 600 0 100 200 300 400 500 600 |
Time (min) Time (min)

Perform steps 1a—2c once every measurement interval
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Estimating “battery-pack SOC”?

» “Battery-pack SOC” is not a physical quantity, so attempting to estimate a value
for it is an ill-posed problem (solution not well defined, not unique)

+ Should battery-pack SOC be 0%? 100%7? 50%?

+ Even if a pack is assumed always to be balanced, what is usually wanted
is a “fuel gauge” which is computed by SOE, not by SOC

m SOC estimates for every cell in a battery pack are required for SOH estimates,
exact calculation of battery-pack SOE and SOP/SOF

m Cells connected in parallel electrically average their behavior, so we need to
compute only a single SOC value for parallel cells

m For every cell group connected in series, we need an independent SOC estimate

» Efficient “bar-delta” and “cell mean model + cell difference model” (CMM+CDM)
approaches exist, which are computationally not much more complex than
computing a single SOC estimate for a single cell

100% SOC

H

0% SOC
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Energy and Power

[ 1 [ 1] [ 1]
= Energy is the ability of the battery to do I
work... — - -
= Normally measured in Wh or KWh, it — | Mo
|nd|<.:ates a quantity of charge — 1 | ]
= Available energy equates to a fuel gage... — = |

full or empty?
m Power indicates the manner in which energy

e i is removed (or added) to the battery >
— 34 Power = time-rate-of-change of Energy
= Relates to the movement of charge into and
| 12 -
— out of the cell; e.g, high-power cells can
-1 move charge at high current rates
—_ P(t)=V(t) x I(t)
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State of Power: Defined

n State of Power (SOP) is commonly defined to mean
how much power — on charge or discharge — can N
be sustained over a specified time into the future - constant power level

= The term takes on a variety of forms in the literature ™7 7" T 7T 7 7 7 1 1 717
— some examples.. ~

¢ Power Limits n
o State of Available Power I i ‘
o Peak Power Time

m Generally, SOP is used in a predictive sense:

¢ We wish to supply an upcoming load demand
(e.g., accelerate, climb a hill, or supply charge
from regen braking) and must inform the vehicle
controller of what it can safely expect from the
battery

Battery’s maximum sustained
power places limits on vehicle
performance
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State of Power: Estimation Methods

= Equivalent-Circuit Model Methods
+ Model-based approach -- relies on simplified battery
dynamics represented by common circuit elements hyst —W'— g,
+ Generally, produces good estimates over a wide OCV(z(1)) ] VW
range of operating conditions, but requires increased i
computational effort compared to CM

+ Currently viewed as the mainstream technique °
s Physics-Based Model Methods

+ Model-based approach based on math models
derived from first-principles of electrochemistry

+ Many advantages owing to internal state information
available from modeled electrochemical variables

+ Most complex computationally, can produce accurate
estimates throughout wide range of operating
conditions

Current collector

Current collector
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Voltage-based discharge limits, simple cell model

= “Hybrid Pulse Power Characterization” (HPPC) method - P‘ﬂSZtVeSt .‘;O”age versus time
by Partnership for New Generation Vehicles (PNGV) 42| Rong.ar = &Veng/ Leng

m Conduct simple lab experiment, tabulating effective AT s o AVeng
cell pulse resistances at different SOCs, temperatures

3.8

Voltage (V)

= Assume a simplified cell model v(t) = OCV(z(t)) —i(t)R ~ *¢%

or i(t) = (0CV(z(t)) — v()) /R saf Y Ry = AVea/lae
L 0 10 20 30 40 50
= To compute power limit, assume we are concerned only Time (s)
with keeping terminal voltage between v,,,;,, and v, R 4
= For discharge power, set R = Ry;; a7 and clamp v(t) = vy,ip OCV(z(1)
= [hen, calcula_te maximum discharge current as constrained by
voltage as il = (0CV(2,(t)) — Vimin)/Raisar V()

= Pack discharge power is then calculated as P35, = NyN, Vi, min(imann
n ’
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Power Limit Estimation: A New MPC Approach

= |n this adaptation, we’ll use MPC to

, nstantancous | Standard Approach
construct an accurate estimate of Power
available (charge/discharge) power  wi()ix() gresese e e e e e o e o oo e
. . . _ _Eillj(k'-lj-N;,)T::i§i
over a f|n|_te time horllzon by : Etoml_/ N i
= executing a constrained MPC 4
algorithm at each sample point to I B een

Time sample

predict an optimal future power profil.

= numerically integrating power to vamns | . MPC Approach
compute total energy R 1
. . . . vE(t)in(t) — f —.
= averaging over a finite time horizon tc . T
estimate max sustainable power B BNIT o o o o
. _| EtOtal:/ ‘ Uk(t)zk(t)dt [ ®
= Note: MPC is not used to control the S5 U O S 0 O

battery, but rather to inform the BMS k Tine sample k+ Ny
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Summary: Main Points

Mv—_

E [ 1
I L
) [
[ i [ ) L ]|
I ] ] \ ]
meas. voltage estimate estimate balance compute
current state of state of power
temperature #fcharge (SOC) 4 health (SOH) cells limits

loop once each measurement |nterval while pack is active

s BMS can be developed either with ECM- or
PBM-based models for control

& Present state-of-the-art uses ECMs, but PBMs
unlock possibility of extending life and improving
battery-pack performance

m ECMs represent cell behavior using analogs
built from common circuit elements — resulting in computationally simple structures

m PBMs use first-principles mathematical equations of electrochemistry — and can be highly
complicated to implement

m BMS control algorithms are designed to estimate: SOC, SOH, SOE, SOP

+ Battery-cell SOC quantifies how much charge is stored that might be released to a load circuit to
accomplish some task
¢ SOP indicates maximum power level that can be sourced/supplied from/to a battery over a fixed time

azijeniul :uo Aay
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For further study

Three volumes on BMS topics available
from Artech House.

ECMs and PBMs are taught in Volume |.
BMS algorithms for SOC, SOH, SOE, ‘e U

SWILSAS INJWIOVYNYIN AHILLIVE

SOF estimation using circuit models are ‘ Battery Modeling (quwalent -Circuit Physics-Based
- ) 1 e Methods Methods
discussed in Volume II. [

Physics-based parameter estimation,
improved impedance models and ROM - -
generation, physics-based state estimation, health estimation, and optimal power-limits
calculations are discussed in Volume llI.

Can also find full semester-long graduate course PDF notes plus lecture videos on ECMs
and PBMs at hitp://mocha-java.uccs.edu/ECES/710/

Can find full semester-long graduate course PDF notes plus lecture videos on ECM-based
BMS algorithms at http://mocha-java.uccs.edu/ECES5720/
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For further study (mostly from the UCCS research team)

= ECMs

¢ Hu X Li S, Peng H. A comparative study of equivalent circuit models for Li-ion batteries. Journal of Power Sources.
2012, 198:359-67.

+ Jackey, R, Plett, G.L., and Klein, M., “Parameterization of a Battery Simulation Model Using Numerical Optimization
Methods,” Proc. SAE World Congress 2009, Detroit, Ml (April 2009), 9 pages.

= PBMs

+ Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell.
Journal of the Electrochemical Society. 1993, 140(6):1526-33.

Newman J, Thomas-Alyea K.E.. Electrochemical Systems. John Wiley & Sons, 2012.

¢ Chu, Z., Plett, G.L., Trimboli, M.S., Ouyang, M., “A control-oriented electrochemical model for lithium-ion battery, Part I:
Lumped-parameter reduced-order model with constant phase element,” Journal of Energy Storage, 25, 2019, 100828.
¢ Jobman, R., Trimboli, M.S., Plett, G.L., “Identification of lithium-ion physics-based model parameter values,” Journal of
Energy Challenges and Mechanics, 2(2), pp. 45-55.
= ROMs
+ Rodriguez, A., Plett, G.L., Trimboli, M.S., “Comparing four model-order reduction techniques, applied to lithium-ion
battery-cell internal electrochemical transfer functions,” e Transportation, Vol. 1, 2019, 1000009.

¢ Rodriguez, A., Plett, G.L., Trimboli, M.S., “Improved transfer functions modeling linearized lithium-ion battery-cell
internal electrochemical variables,” Journal of Energy Storage, Vol. 20, 2018, pp. 560-575.
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For further study (mostly from the UCCS research team)

= ROMs (continued)

¢ Lee, J.L., Aldrich, L., Stetzel, K., Plett, G.L., “Extended operating range for reduced-order model of lithium-ion cells,”
Journal of Power Sources, 255, 2014, pp. 85-100.

¢ Lee, J.L., Chemistruck, A., Plett, G.L., “One-dimensional physics-based reduced-order model of lithium-ion dynamics,”
Journal of Power Sources, 220, 2012, pp. 430—448.

¢ Lee, J.L., Chemistruck, A., Plett, G.L., “Discrete-Time Realization of Transcendental Impedance Functions, with
Application to Modeling Spherical Solid Diffusion,” Journal of Power Sources, 206, 2012, pp. 367-377.

+ Speltino C, Di Domenico D, Fiengo G, Stefanopoulou A. Comparison of reduced order lithium-ion battery models for
control applications. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009
28th Chinese Control Conference, 2009, pp. 3276-3281

+ Smith K.A., Rahn C.D., Wang C-Y. Control oriented 1D electrochemical model of lithium ion battery. Energy Conversion
and Management. 2007 Sep 1;48(9):2565-78.

= Degradation
+ Plett, G.L., “Reduced-order multi-modal model of SEI layer growth for management and control of lithium-ion batteries,”
in IEEE Conference on Control Technology and Applications 2017, Kohala Coast, Hawai'i (August 2017).
+ Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D. A review on lithium-ion battery ageing mechanisms and
estimations for automotive applications. Journal of Power Sources. 2013, 241:680-9.
+ Plett, G.L., “Algebraic solution for modeling SEI layer growth,” ECS Electrochemistry Letters, 2(7), 2013, pp. A63—A65.
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For further study (mostly from the UCCS research team)

= Degradation (continued)
+ Perkins, R.D., Randall, A.V., Zhang, X., Plett, G.L., “Controls Oriented Reduced Order Modeling of Lithium Deposition
on Overcharge,” Journal of Power Sources, 209, 2012, pp. 318-325.
¢ Randall, A.V., Perkins, R.D., Zhang, X., Plett, G.L., “Controls Oriented Reduced Order Modeling of SEI Layer Growth,”
Journal of Power Sources, Vol. 209, July 2012, pp. 282-288.

¢ Park, J., Seo, J.H., Plett, G.L., Lu, W., Sastry, A.M., “Numerical Simulation of the Effect of the Dissolution of LiMn204
Particles on Li-lon Battery Performance,” Electrochemical and Solid State Letters, 14(2), 2010, pp. A14—-A18.

¢ Seo, J.H., Park, J., Plett, G.L., Sastry, A.M., “Gas-evolution Induced Volume Fraction Changes and Their Effect on the
Performance Degradation of Li-ion Batteries,” Electrochemical and Solid State Letters, 13(9), 2010, pp. A135-A137.

+ Safari M, Morcrette M, Teyssot A, Delacourt C. Multimodal physics-based aging model for life prediction of Li-ion
batteries. Journal of The Electrochemical Society. 2009 Mar 1;156(3):A145-53.

+ Vetter J, Novak P, Wagner MR, Veit C, Moller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C,
Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of power sources. 2005 Sep 9;147(1-2):269-81.

+ Broussely M, Biensan P, Bonhomme F, Blanchard P, Herreyre S, Nechev K, Staniewicz RJ. Main aging mechanisms in
Li ion batteries. Journal of power sources. 2005 Aug 26;146(1-2):90-6.

+ Arora P, Doyle M, White R.E.. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion
batteries using carbon-based negative electrodes. Journal of The Electrochemical Society. 1999,146(10):3543-53.
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