
University of Colorado Colorado Springs

M. Scott Trimboli & Gregory L. Plett
Department of Electrical and Computer Engineering

University of Colorado Colorado Springs

ASPIRE Course in Electrified Transportation Systems
Spring 2024

The Role of Battery Management
in Electric Vehicles



University of Colorado Colorado SpringsUniversity of Colorado Colorado Springs

n Part 1: Lithium-ion battery cell models
u Topic 1.1: Equivalent-circuit cell 

models
u Topic 1.2: Parameter identification for 

equivalent-circuit models
u Topic 1.3: Physics-based cell models
u Topic 1.4: Parameter identification for 

physics-based models
n Part 2: Algorithms for battery management 

systems
u Topic 2.1: Estimating state-of-charge
u Topic 2.2: Estimating state-of-power

Topics for today’s lecture
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Role of Battery Management in Electric Vehicles
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§ Primary purposes of battery management are: 
§ Ensure safe vehicle operation — detect unsafe 

operating conditions and take action
§ Protect individual cells from damage (abuse/ 

failure cases), and prolong the life of the battery 
(normal operating cases)

§ Maintain the battery pack in a state where it can 
fulfill its functional design requirements

§ Prolong the life of the battery under normal operating conditions
§ Inform vehicle controller on how to make best use of the battery pack (e.g., power limits, charge 

control, etc.)

§ Battery management is accomplished by a battery management system (BMS) –
an embedded device installed on-board the vehicle
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Battery Management Functions
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§ A BMS continually makes 
physical measurements of 
voltage, current, & temperature,
and runs algorithms to:

§ Determine battery pack:
§ State-of-Charge (SOC)
§ State-of-Health (SOH)

§ Determine which cells must be balanced
§ Compute available energy and State-of-Power (SOP) of the pack
§ The most accurate and robust algorithms rely heavily on mathematical equations, 

or models, that describe battery cell operation
key on: initialize

meas. voltage

loop once each measurement interval while pack is active

current
temperature charge (SOC)  
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estimate estimate
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balance compute
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Battery Cell Models
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Topic 1.1
Equivalent-Circuit Cell Models
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Equivalent-circuit Models; Open-circuit Voltage
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State of Charge and Total Capacity
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Coulombic Efficiency; Open-circuit Voltage
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Polarization: Ohmic and Diffusion Voltages
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Thévenin Model
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Experimental Evidence of Hysteresis
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Enhanced self-correcting model
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Topic 1.2
Parameter Identification for 

Equivalent-Circuit Cell Models

ASPIRE Electrified Transportation Systems CourseMarch 2024



University of Colorado Colorado SpringsUniversity of Colorado Colorado Springs

Characterizing Cell OCV
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Processing OCV-test Data
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Characterizing model dynamic parameter values
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Processing model dynamic parameter values
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Topic 1.3
Physics-Based Cell Models
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Physics-based models (PBMs)
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n Continuum “porous electrode” “pseudo-2d” 
models use physics to derive equations for all 
internal cell processes using coupled PDEs

n Solving the PDEs (and associated boundary 
conditions) determines all internal and 
external variables of interest

Continuum-scale P2D model
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1-d diffusion example
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Open-circuit voltage
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Cell total capacity and SOC

24March 2024 ASPIRE Electrified Transportation Systems Course



University of Colorado Colorado SpringsUniversity of Colorado Colorado Springs

25

Part 1.4
Parameter Identification for 
Physics-Based Cell Models
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n We now consider parameter identification for PBMs
n For ECM, fit values of R1, R0, C1 (etc.) so model predictions 

match measured current–voltage data as well as possible
u A simple optimization since there are few values to find

n For PBM, at least 35 unique values must be measured, plus 
two OCP relationships
u Not all are observable from current–voltage data
u Traditionally, the process is done via cell teardown and 

costly electrochemical experiments 
u Dimensional parameters are relatively easy to measure 

via teardown; others are difficult to impossible to measure
n Our procedure: (1) reformulate model, (2) conduct lab tests 

designed to isolate specific parameters, (3) process test data

Parameter identification for PBMs
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Model reformulation and OCP determination
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[1] Jobman, R., Trimboli, M.S., Plett, G.L., “Identification of lithium-ion physics-based model parameter values,” J. Energy Challenges & Mechanics, 2(2), 45–55, 2015
[2] Jobman, R. Identification of Lithium-Ion Cell Physics-Model Parameter Values, PhD dissertation, UCCS, 2015, http://hdl.handle.net/10976/166641
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Finding parameters of dynamic portion of model
n Process of system identification for dynamic portion of PBM is similar to that for ECM

n However, the problem now is that we have many, many more parameter values to find
n Cleverly designed lab tests help by isolating responses from certain groups of parameters

u Variety of input (e.g., different frequencies, magnitudes; SOC setpoints)
u Necessary to be able to to formulate submodels for each test to aid optimizations
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n Pulse tests measure instantaneous resistance as a
function of SOC, rate, and temperature
u Removes diffusion parameters from consideration

since concentrations do not change instantly
u Optimizes model parameter values to match model

resistance to measured resistance as well as possible
u Resolves values for 15 parameters! Only 9 remain

n Finally, EIS tests conducted over wide frequency range 
collect data to determine remaining parameter values

n Optimize model parameter values to match
model frequency response to measured
frequency response as well as possible

Pulse and EIS testing
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Part 2
Algorithms for Battery Management 

Systems
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n A battery-management system (BMS) is required to monitor and control battery operation
n A BMS has the following priorities:

u Protects safety of the operator of the host application; detects 
unsafe operating conditions and responds

u Protects cells of battery from damage in abuse/failure cases
u Prolongs service lifetime of battery (normal operating cases)
u Maintains battery in a state in which it can fulfill its functional design 

requirements
u Informs the host-application control computer how to make the best 

use of the pack right now (e.g., power limits), control charger, etc.
n There are both hardware and software elements in a BMS design

u This lecture will focus on the software/algorithm requirements
related to careful battery management, as well as hardware
sensing requirements to enable these algorithms

BMS Tasks
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n Battery applications need to know two battery quantities: 
u How much energy is presently stored in the battery pack
u How much power is available in the immediate future 

n Knowing energy is most important for applications such as EV: 
u Tells me how far I can drive (or, how much runtime remains)

n Knowing power is most important for applications such as HEV: 
u Tells me whether I can accelerate or accept braking charge 

n Neither can be measured directly
u Energy can be calculated if all cell total capacities Q

and states of charge are known
u Power limits can be estimated if all cell resistances R

and states of charge are known
n Neither SOC, Q, nor R can be measured directly: these

must be estimated using more primitive measurements

BMS algorithm outputs

32

EnergyPack
Calculations

Q

SOC

R Power

ASPIRE Electrified Transportation Systems CourseMarch 2024



University of Colorado Colorado SpringsUniversity of Colorado Colorado Springs

33

Topic 2.1
Estimating State of Charge
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n Battery-cell SOC quantifies how 
much charge is stored that might 
be released to a load circuit to 
accomplish some task

n There is no practical sensor that 
can measure SOC; instead, its 
value must be estimated using 
more basic measurements of cell voltage, current, and temperature (for example)

n Knowledge of SOC is needed to calibrate many SOH estimates, and in the calculation of 
SOE and SOP themselves

n Knowing SOC is important to avoid overcharge and undercharge conditions, for charge 
control in general, and for balancing

n Accurate SOC estimates enhance: longevity, performance, reliability, density, economy

SOC estimation in the BMS algorithm control loop
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n SOC is a physical quantity that (in principle)
could be measured directly, although no practical
sensor exists that can do so

n In negative- and positive-electrode particles, there
are a discrete number of sites that can hold lithium

n For longevity, we never fill all vacancies nor do we
empty all sites; we use a predetermined range

n At one end of the range, we define cell SOC to be
0%; at the other end, we define cell SOC to be 100%

n SOC varies linearly between these extremes
n Note that it is physically possible to overcharge and

undercharge: the definition of “0%” and “100%” are
operational design limits, not physical limits

Physical significance of SOC
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Definitions
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n SOC estimation is a very mature field; many approaches
n BMS-algorithm engineers naturally tend to implement methods

that “make sense” to them, regardless of accuracy/complexity/
robustness…

n Note: there is a difference between conceptual complexity and
computational complexity – in a product, the latter matters more

n My opinion is that model-based methods are best approach
u “Don’t estimate what 

you already know” … 
use your model!

u Based on tried-and-true
control-systems principles

u “Observers” and “adaptive
filters” fall into this
category

Taxonomy of SOC-estimation methods
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n With some assumptions, KF is optimal: often work well even when assumptions violated
n Standard KF uses linear models; lithium-ion cells are nonlinear so must use nonlinear 

variant; e.g., extended KF, sigma-point KF (incl. UKF, CKF)
n Filter predicts state and voltage; then updates prediction 

based on measured voltage and time-varying gain matrix
n Important feature of xKF: confidence bounds on estimate!
n Example using EKF below:

Kalman-filter approach to SOC estimation
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n “Battery-pack SOC” is not a physical quantity, so attempting to estimate a value
for it is an ill-posed problem (solution not well defined, not unique)
u Should battery-pack SOC be 0%? 100%? 50%?
u Even if a pack is assumed always to be balanced, what is usually wanted

is a “fuel gauge” which is computed by SOE, not by SOC
n SOC estimates for every cell in a battery pack are required for SOH estimates,

exact calculation of battery-pack SOE and SOP/SOF
n Cells connected in parallel electrically average their behavior, so we need to

compute only a single SOC value for parallel cells
n For every cell group connected in series, we need an independent SOC estimate
n Efficient “bar-delta” and “cell mean model + cell difference model” (CMM+CDM)

approaches exist, which are computationally not much more complex than
computing a single SOC estimate for a single cell

Estimating “battery-pack SOC”?
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Topic 2.2
Estimating State of Power
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n Energy is the ability of the battery to do 
work… 

n Normally measured in Wh or KWh, it 
indicates a quantity of charge

n Available energy equates to a fuel gage… 
full or empty?

Energy and Power

March 2024 41
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n Power indicates the manner in which energy 

is removed (or added) to the battery à
Power = time-rate-of-change of Energy

n Relates to the movement of charge into and 
out of the cell; e.g, high-power cells can 
move charge at high current rates
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n State of Power (SOP) is commonly defined to mean 
how much power – on charge or discharge – can 
be sustained over a specified time into the future

n The term takes on a variety of forms in the literature 
– some examples.. 

u Power Limits
u State of Available Power
u Peak Power

n Generally, SOP is used in a predictive sense:
u We wish to supply an upcoming load demand 

(e.g., accelerate, climb a hill, or supply charge 
from regen braking) and must inform the vehicle 
controller of what it can safely expect from the 
battery

State of Power: Defined

March 2024 42

Battery’s maximum sustained 
power places limits on vehicle 

performance

constant power level
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n Equivalent-Circuit Model Methods 
u Model-based approach -- relies on simplified battery 

dynamics represented by common circuit elements
u Generally, produces good estimates over a wide 

range of operating conditions, but requires increased 
computational effort compared to CM

u Currently viewed as the mainstream technique
n Physics-Based Model Methods

u Model-based approach based on math models 
derived from first-principles of electrochemistry

u Many advantages owing to internal state information 
available from modeled electrochemical variables

u Most complex computationally, can produce accurate 
estimates throughout wide range of operating 
conditions

State of Power: Estimation Methods
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Voltage-based discharge limits, simple cell model
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§ In this adaptation, we’ll use MPC to 
construct an accurate estimate of 
available (charge/discharge) power 
over a finite time horizon by --
§ executing a constrained MPC 

algorithm at each sample point to 
predict an optimal future power profile

§ numerically integrating power to 
compute total energy

§ averaging over a finite time horizon to 
estimate max sustainable power

§ Note: MPC is not used to control the 
battery, but rather to inform the BMS

Power Limit Estimation:  A New MPC Approach
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Summary: Main Points

46

n BMS can be developed either with ECM- or 
PBM-based models for control
u Present state-of-the-art uses ECMs, but PBMs 

unlock possibility of extending life and improving 
battery-pack performance

n ECMs represent cell behavior using analogs 
built from common circuit elements – resulting in computationally simple structures

n PBMs use first-principles mathematical equations of electrochemistry – and can be highly 
complicated to implement

n BMS control algorithms are designed to estimate: SOC, SOH, SOE, SOP
u Battery-cell SOC quantifies how much charge is stored that might be released to a load circuit to 

accomplish some task
u SOP indicates maximum power level that can be sourced/supplied from/to a battery over a fixed time
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n Three volumes on BMS topics available 
from Artech House.

n ECMs and PBMs are taught in Volume I.
n BMS algorithms for SOC, SOH, SOE,

SOF estimation using circuit models are
discussed in Volume II.

n Physics-based parameter estimation, 
improved impedance models and ROM 
generation, physics-based state estimation, health estimation, and optimal power-limits 
calculations are discussed in Volume III.

n Can also find full semester-long graduate course PDF notes plus lecture videos on ECMs 
and PBMs at http://mocha-java.uccs.edu/ECE5710/

n Can find full semester-long graduate course PDF notes plus lecture videos on ECM-based 
BMS algorithms at http://mocha-java.uccs.edu/ECE5720/
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n ECMs
u Hu X, Li S, Peng H. A comparative study of equivalent circuit models for Li-ion batteries. Journal of Power Sources. 

2012, 198:359-67.
u Jackey, R., Plett, G.L., and Klein, M., “Parameterization of a Battery Simulation Model Using Numerical Optimization 

Methods,” Proc. SAE World Congress 2009, Detroit, MI (April 2009), 9 pages.
n PBMs

u Doyle M, Fuller TF, Newman J. Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell. 
Journal of the Electrochemical Society. 1993, 140(6):1526-33.

u Newman J, Thomas-Alyea K.E.. Electrochemical Systems. John Wiley & Sons, 2012.
u Chu, Z., Plett, G.L., Trimboli, M.S., Ouyang, M., “A control-oriented electrochemical model for lithium-ion battery, Part I: 

Lumped-parameter reduced-order model with constant phase element,” Journal of Energy Storage, 25, 2019, 100828.
u Jobman, R., Trimboli, M.S., Plett, G.L., “Identification of lithium-ion physics-based model parameter values,” Journal of 

Energy Challenges and Mechanics, 2(2), pp. 45–55.
n ROMs

u Rodríguez, A., Plett, G.L., Trimboli, M.S., “Comparing four model-order reduction techniques, applied to lithium-ion 
battery-cell internal electrochemical transfer functions,” eTransportation, Vol. 1, 2019, 100009.

u Rodríguez, A., Plett, G.L., Trimboli, M.S., “Improved transfer functions modeling linearized lithium-ion battery-cell 
internal electrochemical variables,” Journal of Energy Storage, Vol. 20, 2018, pp. 560–575.
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n ROMs (continued)
u Lee, J.L., Aldrich, L., Stetzel, K., Plett, G.L., “Extended operating range for reduced-order model of lithium-ion cells,” 

Journal of Power Sources, 255, 2014, pp. 85–100.
u Lee, J.L., Chemistruck, A., Plett, G.L., “One-dimensional physics-based reduced-order model of lithium-ion dynamics,” 

Journal of Power Sources, 220, 2012, pp. 430–448.
u Lee, J.L., Chemistruck, A., Plett, G.L., “Discrete-Time Realization of Transcendental Impedance Functions, with 

Application to Modeling Spherical Solid Diffusion,” Journal of Power Sources, 206, 2012, pp. 367–377.
u Speltino C, Di Domenico D, Fiengo G, Stefanopoulou A. Comparison of reduced order lithium-ion battery models for 

control applications. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 
28th Chinese Control Conference, 2009, pp. 3276-3281

u Smith K.A., Rahn C.D., Wang C-Y. Control oriented 1D electrochemical model of lithium ion battery. Energy Conversion 
and Management. 2007 Sep 1;48(9):2565-78.

n Degradation
u Plett, G.L., “Reduced-order multi-modal model of SEI layer growth for management and control of lithium-ion batteries,” 

in IEEE Conference on Control Technology and Applications 2017, Kohala Coast, Hawai’i (August 2017).
u Barré A, Deguilhem B, Grolleau S, Gérard M, Suard F, Riu D. A review on lithium-ion battery ageing mechanisms and 

estimations for automotive applications. Journal of Power Sources. 2013, 241:680-9.
u Plett, G.L., “Algebraic solution for modeling SEI layer growth,” ECS Electrochemistry Letters, 2(7), 2013, pp. A63–A65.
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n Degradation (continued)
u Perkins, R.D., Randall, A.V., Zhang, X., Plett, G.L., “Controls Oriented Reduced Order Modeling of Lithium Deposition 

on Overcharge,” Journal of Power Sources, 209, 2012, pp. 318-325.
u Randall, A.V., Perkins, R.D., Zhang, X., Plett, G.L., “Controls Oriented Reduced Order Modeling of SEI Layer Growth,” 

Journal of Power Sources, Vol. 209, July 2012, pp. 282-288.
u Park, J., Seo, J.H., Plett, G.L., Lu, W., Sastry, A.M., “Numerical Simulation of the Effect of the Dissolution of LiMn2O4 

Particles on Li-Ion Battery Performance,” Electrochemical and Solid State Letters, 14(2), 2010, pp. A14–A18.
u Seo, J.H., Park, J., Plett, G.L., Sastry, A.M., “Gas-evolution Induced Volume Fraction Changes and Their Effect on the 

Performance Degradation of Li-ion Batteries,” Electrochemical and Solid State Letters, 13(9), 2010, pp. A135–A137.
u Safari M, Morcrette M, Teyssot A, Delacourt C. Multimodal physics-based aging model for life prediction of Li-ion 

batteries. Journal of The Electrochemical Society. 2009 Mar 1;156(3):A145-53.
u Vetter J, Novák P, Wagner MR, Veit C, Möller KC, Besenhard JO, Winter M, Wohlfahrt-Mehrens M, Vogler C, 

Hammouche A. Ageing mechanisms in lithium-ion batteries. Journal of power sources. 2005 Sep 9;147(1-2):269-81.
u Broussely M, Biensan P, Bonhomme F, Blanchard P, Herreyre S, Nechev K, Staniewicz RJ. Main aging mechanisms in 

Li ion batteries. Journal of power sources. 2005 Aug 26;146(1-2):90-6.
u Arora P, Doyle M, White R.E.. Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion 

batteries using carbon-based negative electrodes. Journal of The Electrochemical Society. 1999,146(10):3543-53.
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